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Growth is fundamental to complex systems as varied as 
biological organisms, national economies, and social net-
works. Models and theories of development often attempt 
to accurately describe and predict growth and to explain 
its underlying processes. A common example is physi-
cal growth in humans (Eveleth & Tanner, 1990; Jolicœur, 
Pontier, & Abidi, 1992). Figure 1 illustrates an example of 
growth in physical height of a child in the Berkeley study 
(Tuddenham & Snyder, 1954). The figure presents height 
measurements from 1 to 18 years of age and a spline-
based continuous function fitted to the data with the first 
three derivatives (velocity, acceleration, and jerk). This 
example illustrates how growth can be bumpy and non
linear, involving complex dynamics that can be seen on 
the graphs of the derivatives.

Studying development often involves detecting depar-
tures from baseline growth. Such departures—that is, 
growth spurts—may indicate important changes in the 
underlying growth processes. If we want to test compet-
ing theories of development, we need a good assessment 
of what the data are really like. When the underlying 
growth process is unknown, one of the first questions one 
may ask is the following: Are data increasing linearly or 
not? This might seem like a simple question, but because 
developmental data are usually noisy and measurement 
techniques have a limited precision, it is often difficult 
to determine whether observed deviations from baseline 
growth are genuine or, instead, caused by random varia-
tions and measurement artifacts.

Visual inspection of the growth curve itself is often in-
sufficient because it can be difficult to determine whether 
an apparent spurt is a significant departure from baseline 
growth or present at all. The height curve in Figure 1 pro-
vides an example of an apparent spurt at adolescence, but 
no other spurt is apparent by visual examination alone. 
The method we introduce in this article is able to detect 
two statistically valid growth spurts for this boy, one at just 
over 7 years of age and another one later at adolescence, 
around 13 years of age.

When a model of the underlying growth process exists 
(e.g., modeled using asymptotic, logistic, or exponential 
functions), parametric approaches are well suited to de-
tecting departures from expected growth—that is, spurts. 
Here, however, we address the more difficult problem 
of detecting spurts in data for which little, if anything, 
is known about the process that generates them. We thus 
take a nonparametric approach that consists of detecting 
significant departures from linearity. We define spurts as 
local or temporary departures from some linear, baseline 
rate of growth in continuous data. Such local spurts begin 
with a significant increase in rate of growth and end with 
a significant decrease. To exclude spurious changes due 
to noise, we count as significant only increases and de-
creases that cannot be accounted for by the variance or 
uncertainty of the data (more on this in the Method sec-
tion). Decreases following a spurt mark a slowing down 
of growth but do not require growth to become negative. 
Identifying growth spurts is part of a class of statistical 
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uals. For example, Fourier series could be used to identify 
spurts that occur cyclically (Ramsay & Silverman, 2005). 
Also, when spurts synchronously occur across individu-
als, data from individual records can be pooled to reduce 
noise and increase detection power. However, pooling 
growth data often requires curve registration. In contrast 
to these techniques, AMD makes very few assumptions 
about the data.

AMD takes as input a smooth estimate of the function that 
generated the observed data sample, its first three deriva-
tives (sometimes referred to as velocity, acceleration, and 
jerk), and confidence bands for the first derivative (veloc-
ity). Any technique that provides these features can be used, 
including general kernel methods (Shawe-Taylor & Cris-
tianini, 2004), Loess (Cleveland, Grosse, & Shyu, 1992), 
penalized splines (Green & Silverman, 1994; O’Sullivan, 
1986), restricted cubic splines (Harrell, 2001), random 
walks (Hughes, 1996), and so forth. Confidence bands can 
be numerically approximated for these techniques by using 
jackknife or bootstrap approaches (Efron, 1981).

problems called change point analysis (e.g., Carlstein, 
Müller, & Siegmund, 1994).

In this article, we introduce a technique called automatic 
maxima detection (AMD) that automates this identifica-
tion process. Our work has two goals: first, automating the 
spurt detection process, and second, precisely quantifying 
spurts—when they started, when they were most intense, 
how large they were, and how long they lasted. Further-
more, our system computes the variance associated with 
those four measures. These spurt characteristics can be 
subjected to further statistical analysis. Our method, which 
takes as input a smoothed curve with confidence bands, is 
systematic, automated, and problem independent. AMD 
makes few assumptions about the data, because it uses 
local features in individual records. Thus, AMD is espe-
cially interesting for exploratory analyses when little is 
known about the data. AMD can also be used to support 
confirmatory analyses.

Some analysis techniques capitalize on global features 
such as trends, periodicity, and replication across individ-
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Figure 1. Height of a child in the Berkeley study (Tuddenham & Snyder, 1954) aligned with its first three derivatives 
(velocity, acceleration, and jerk), estimated using functional data analysis. Dotted lines around curves represent 95% 
confidence bands. Automatic maxima detection (AMD) uses signs of the jerk function (third derivative) as important 
markers. In all AMD-generated plots presented in this article, significant spurts are marked as large circles at the loca-
tion in time at which they occur (i.e., point of maximal velocity). 
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process in FDA, but AMD can be used equally well with 
other smoothing techniques.

Preprocessing Using FDA
The analysis begins with a sample of data pairs ( yj, tj), 

where yj is a measure of interest (e.g., height or vocabu-
lary size) that varies with tj (which is often the time of 
measurement). A first step in FDA is to estimate a smooth 
and continuous function x(t)1 from these discrete observa-
tions as a weighted linear combination of B-spline basis 
functions, ϕk, k 5 1, . . . , K:

	 x(t) 5 SK
k ckϕk(t).	 (1)

B-spline basis functions are piecewise polynomials of 
fixed degree joined end to end at locations called knots. 
Whereas, on the axis of the independent variable (time), 
knots are often positioned to coincide with observation 
points tj, on the other axis, estimated values x(t) are not 
required to—and in general will not—coincide with yj.

FDA uses a roughness penalty approach to curve 
smoothing. A roughness penalty consists of limiting or 
penalizing the size of some higher order derivative of the 
smoothed function. Large values of higher derivatives 
imply rapid changes in the value of the function.

Coefficients ck are selected to minimize a penalized 
sum of squared errors (PENSSE) between the estimated 
function and observed data vector y:

	 PENSSE( y | c) 5 ( y 2 Fc)′ W( y 2 Fc) 1 lc′Rc,	 (2)

where c is a vector of coefficients ck, W is a symmetric 
positive definite weight matrix, Φ is the n 3 K matrix of 
basis function values ϕk(tj), and λ is a smoothing param-
eter. The fitted curve x(t) becomes increasingly smooth as 
λ increases. R is a roughness penalty matrix:

	
R = 
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(3)

For AMD, the roughness of the third derivative is 
controlled by penalizing the size of the fifth derivative. 
Splines of polynomial degree six are used to ensure that 
the third derivative of x(t), needed for AMD, is smooth. 
See Ramsay and Silverman (2005) for further details, in-
cluding a discussion of smoothing parameter selection in 
the context of modeling growth data.

Computation of confidence bands in FDA. In addi-
tion to a smoothed function and its first three derivatives,2 
AMD requires confidence bands of the first derivative of 
the function. In FDA, variance of the fitted function x is 
computed as follows:

	 Var[x] 5 F′Var[c]F,	 (4)

where Φ is a matrix of basis function values at the obser-
vation points (see above); Var[c] is the variance of coef-
ficients ck:

	 Var[c] 5 (F′WF)21F′W SeWF(F′WF)21;	 (5)

W is a symmetric positive definite weight matrix (see 
above); and Σe is the variance–covariance matrix of the 
residual vector ε.

Researchers may select any appropriate smoothing tech-
nique for their data. A large literature exists on smoothing 
methods (Eubank, 1999; Ramsay & Silverman, 2005; Si-
monoff, 1996). However, because current techniques have 
limitations, caution should be exercised when selecting 
an automated smoothing method (Ramsay, Hooker, & 
Graves, 2009; Ramsay, pers. comm., July 2007); automa-
tion may never completely replace subjective decisions 
(Ramsay, Bock, & Gasser, 1995, p. 420). Consequently, 
appropriate smoothing is often problem specific, and thus 
a general discussion is beyond the scope of this article. 
However, we present an illustration using height data of 
how we can systematically study the effect of the amount 
of smoothing on the AMD measures of spurts.

The MATLAB implementation presented here uses 
functional data analysis (FDA) as a spline regression 
technique (Ramsay & Silverman, 2005). AMD code can 
be downloaded from http://lnsclab.org/lib/AMD/. The lat-
est version of the FDA code is available at www.psych 
.mcgill.ca/misc/fda/. See Ramsay et al. (2009) for docu-
mentation on using FDA with MATLAB.

An important advantage of using FDA is that the com-
putation of derivatives is particularly well integrated. FDA 
has proven useful for the analysis of growth curves and 
detection of developmental spurts. In previous research, 
however, identification of spurts and plateaus had to be 
performed manually by an expert (Ramsay et al., 1995; 
Shultz, 2003). AMD aims at automating this identifica-
tion process.

As illustrations, we tested our system on physical data 
of children’s height from the Berkeley growth study (Tud-
denham & Snyder, 1954), on simulated data of children’s 
vocabulary size (McMurray, 2007; Mitchell & McMurray, 
2008), and on experimental data of children’s vocabulary 
size (Corrigan, 1978). We chose the first two problems be-
cause both of them have uncontroversial growth spurts that 
we expected AMD to find, a well-documented spurt during 
adolescence for physical growth (Tanner, 1978) and a large 
central spurt for simulated vocabulary data. The two prob-
lems have, however, different characteristics. On the one 
hand, physical growth data are usually sampled sparsely 
and change rather smoothly. On the other hand, vocabulary 
data are often densely sampled and change more abruptly, 
resulting in a staircase-like curve. Finally, we include an 
analysis of real vocabulary growth to show how the quan-
titative rigor of AMD can help inform controversial issues 
of development—in this case, whether vocabulary spurts 
in children are genuine (Ganger & Brent, 2004). Using the 
physical growth data, we assess the effect of the smoothing 
parameter, which also serves to illustrate how spurt char-
acteristics measured with AMD can be further analyzed 
using standard statistical techniques. In a discussion fol-
lowing the presentation of these results, we will argue that 
AMD can inform research on stages of development.

Method

Before presenting AMD per se, we first describe a pre-
processing step that involves estimating smoothed func-
tions, derivatives, and confidence bands. We describe this 
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positive. This point occurs before the point of maximal ve-
locity is reached. Using the fundamental theorem of cal-
culus, such a point of maximal acceleration corresponds 
to the jerk equaling zero:

	

d
dt

x t
3

3
0( ) .start =

	
(8)

Similarly, we define the ending of a spurt tend as the 
point following the spurt where the magnitude of accel-
eration is locally maximal but with a negative sign, which 
also corresponds to a zero crossing of the jerk curve:

	

d
dt

x t
3

3
0( ) .end =

	
(9)

We define spurt duration as the length of the interval 
from start to end:

	 duration end start= −t t . 	 (10)

Note that over the spurt interval, because acceleration is 
positive at the beginning of a spurt and negative at the end, 
we can actually characterize a spurt as the region of nega-
tive jerk bounded by two zero crossings (sign changes), 
using the fundamental theorem of calculus:

	

d
dt

x t t t t
3

3
0( ) [ , ].< ∈for all start end

	
(11)

Equation 11 represents the definition of a spurt in AMD. 
On the example given in Figure 1, spurts (i.e., regions of 
negative jerk) are indicated.

Finally, we define spurt amplitude as the energy in the 
velocity of the function—that is, the area under the jerk 
curve during the spurt. Because this area is negative, we 
need to invert the sign. Using the fundamental theorem of 
calculus, the energy in the spurt—that is, its amplitude—
is the difference in acceleration between points tend and 
tstart:

	

spurt amplitude
start

end= −

=

∫ d
dt

x t

d
dt

x

t

t 3

3

2

2
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(( ) ( ).t d
dt

x tstart end−
2

2 	
(12)

Since data sampling is discrete, the true location of a 
spurt feature relating to time (point of maximal velocity, 
start, and end) will virtually never coincide with a sam-
pling point and, instead, will fall between sampling points. 
Because the spline-based approach of FDA generates a 
smooth fitted function, AMD can measure spurt features 
at an estimation of their true location, including between 
the sampling locations.4 In other words, once the points 
yj are modeled as a continuous function x(t) using FDA, 
calculations of derivatives rely directly on this continuous 
function and not on sampling locations.

To compute the variance of each of these four measures 
(start, point of maximal velocity, duration, and amplitude), 
we use a standard bootstrapping approach called resam-
pling residuals (Efron & Tibshirani, 1993). We compute 
residuals between the estimated values in the FDA-fitted 
curve and the raw data. We generate new data by add-
ing residuals that were resampled with replacement to the 
original fitted curve. With these new data, we estimate a 

Here, using the standard model (Σe 5 σ2I ), Var[c] sim-
plifies to

	 σ2(Φ′Φ)21.	 (6)

These FDA estimates of variance can be easily con-
verted into a standard error and then into confidence 
bands for a given user-specified target alpha value. For 
instance, for alpha equal to .05 as used here (i.e., 95% 
confidence intervals), the width of the confidence band is 
2 3 1.96 times the standard error. These bands are called 
pointwise because they indicate the precision with which 
a curve is estimated at a fixed point t, rather than the entire 
curve over the whole range of t. The details of the method 
used to estimate these bands in FDA, including some limi-
tations and warnings, can be found elsewhere (Ramsay & 
Silverman, 2005).

Automatic Maxima Detection
In this section, we describe how the AMD system works 

to automatically detect candidate spurts and quantify their 
times of maximal velocities, starts, ends, durations, and 
amplitudes. Then we explain how AMD determines spurt 
validity—that is, how it distinguishes, among candidate 
spurts, those that are likely genuine from those due to 
random variations in the data. As a precondition to using 
AMD, users need a smooth function fitted to their raw 
data, three derivatives of this function, and confidence 
bands for the first derivative.

Ramsay et al. (1995) and Shultz (2003) have provided 
examples of growth data modeling using FDA. They noted 
that velocity peaks can identify spurts, whereas velocity 
valleys indicate plateaus in growth data. They also noted 
that rapid acceleration descents indicate velocity peaks 
and, thus, growth spurts, whereas acceleration increases 
represent relative growth plateaus (cf. zones of nega-
tive and positive jerk, respectively, in Figure 1). Finally, 
they noted that an upward bend in the growth curve, sig-
naled by high curvature (peak acceleration) and followed 
by straightening (decreasing acceleration), marks high 
growth velocity and, thus, a spurt in growth. Our system 
operationalizes these ideas.

Locating and quantifying spurts: Start, point of 
maximal velocity, duration, and amplitude. AMD first 
identifies zero crossings in the first three derivatives as 
important landmarks in the function; a similar approach 
was taken in Ramsay et al. (1995). This section describes 
how to identify candidate spurts, which may turn out to 
be genuine (significant) or spurious (nonsignificant). The 
following section describes how to determine the signifi-
cance of these candidate spurts.

Figure 2 presents a visual example of how spurts are 
measured.

We define the point of maximal velocity of a spurt as the 
point tspurt where velocity is maximal and, thus, by the fun-
damental theorem of calculus, acceleration equals zero:3

	

d
dt

x t
2

2
0( ) .spurt =

	
(7)

We define the beginning (start) of a spurt, tstart, as the 
point where acceleration is locally maximal and its sign is 
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the interval of the spurt [tstart, tend]. If we assume that those 
three points (a maximum and two adjacent minima) are 
independent (uncorrelated), this criterion can be imple-
mented as having nonoverlapping confidence intervals:

	
low highspurt

d
dt

x t d
dt

x t( ) ( )min( ) > ( )1
	

(13)

and

	
low highspurt

d
dt

x t d
dt

x t( ) ( ) ,min( ) > ( )2
	

(14)

where

	
low spurt

d
dt

x t( )( )
	

is the lower bound of the confidence band of the velocity 
where the spurt occurs and 

	
high d

dt
x t( )min1( ) 	

new curve using FDA, on which we run our spurt iden-
tification system to find values of spurt measures (point 
of maximal velocity, start, duration, and amplitude). The 
process is repeated many times (e.g., 10,000) with dif-
ferent random sampling of the residuals distribution in 
order to generate a large sample of curves whose noise 
characteristics are similar to the originally fitted curve. 
Finally, we compute spurt measures on each curve in the 
sample. The variance of those measures in the sample is 
an estimate of the variance in the original curve.

Identifying genuine spurts. After having detected 
candidate spurts, AMD distinguishes genuine spurts from 
spurious spurts that can be explained away as noise. To 
determine whether a spurt is genuine, AMD verifies that 
the velocity at the point of maximal velocity of the spurt 
is significantly larger than the velocities of the very next 
local velocity minima preceding (tmin1) and following 
(tmin2) the spurt. As is illustrated in Figure 3, the interval 
defined by [tmin1, tmin2] is wider than, but encompasses, 
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Figure 2. Visual representation of spurt start, end, point of maximal velocity, amplitude, and duration. This 
illustration corresponds to the adolescent spurt of the child in Figure 1. 
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the velocity function represent 95% confidence bands. 
We see that the lower bound of the confidence band at the 
point of maximal velocity of the spurt,

	
low spurt

d
dt

x t( )( ) 	
is smaller than the higher bound of the confidence bands 
on the two surrounding minima, 

	
high d

dt
x t( )min1( ) 	

and

	
high d

dt
x t( ) .min2( ) 	

Furthermore, the dotted line joining the upper parts of 
confidence bands of the two minima is completely in-
cluded in the function’s confidence band, and therefore, 
we cannot reject the hypothesis that a straight line between 
the minima (i.e., without an increase in velocity) can ac-
count for the data.

and

	
high d

dt
x t( ) .min2( ) 	

are the upper bounds of the confidence bands of the veloc-
ity minima surrounding the spurt. We return to the inde-
pendence assumption in the Discussion section.

Figure 3 presents an example of a genuine—that is, 
statistically significant—spurt. For this spurt, the lower 
bound of the confidence band at the point of maximal ve-
locity of the spurt is larger than the higher bound of the 
confidence bands on the two surrounding minima. Fur-
thermore, the dotted line joining the higher parts of con-
fidence bands of the two minima is not fully included in 
the function’s confidence band. Therefore, at the .05 level, 
we reject the hypothesis that a straight line can account for 
the data, and thus a significant increase in velocity (i.e., a 
spurt) is present.

Figure 4 presents an example of a spurious—that is, not 
statistically significant—spurt. Dotted lines surrounding 
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for girls’ adolescent growth spurts than for boys’ (e.g., 
Frisch & Revelle, 1971); and (3) a smaller preadolescent 
growth spurt in some children (such spurts tend to be small 
and difficult to detect; Molinari, Largo, & Prader, 1980).

Figure 5 graphically summarizes the spurt results for all 
the boys in the Berkeley study, using a smoothing level λ 
of 0.1. AMD showed a statistically significant adolescent 

Visualization tools. In addition to automatic detec-
tion and quantification of significant spurts, we included 
visualization tools in our AMD system. First, each indi-
vidual case can be plotted (see Figures 1, 13, 14, and 15 
for examples). On the top level, the plot shows a graph 
of the fitted function using FDA overlapped with the 
raw data ( yj, tj). The lower graphs show the first three 
derivatives: velocity, acceleration, and jerk curves, re-
spectively. For these graphs of derivatives, dots indicate 
where observations were taken [i.e., dn/dtn x(tj), tj where 
x is the fitted function]. Dotted lines mark lower and 
upper bounds of the confidence intervals. Circled dots 
indicate where significant spurts are located in the de-
rivative functions.

Second, group data are summarized on a single graph 
using an innovative graphing technique. Figures 5 and 6 
are examples of height data as a function of age from the 
Berkeley study (Tuddenham & Snyder, 1954), for boys 
and girls, respectively. These data will be further dis-
cussed in the Results section. Each horizontal line repre-
sents a significant spurt. Line thickness is proportional to 
the amplitude, with the amplitude scale adjusted to fit the 
largest spurt in the data to be plotted. Line length indicates 
spurt duration. Line ends coincide with the start and the 
end of the spurt. The number superposed on the line indi-
cates the order of the spurt (if there are more than one, the 
first spurt has a label “1,” the second “2,” and so on). The 
position of each such number label indicates the point of 
maximal velocity. The results shown in Figures 5 and 6 
are sorted by points of maximal velocities, but AMD also 
provides other sorting options.

Results

We applied our AMD technique to two problems: 
(1) physical growth data measuring children’s height at 
various ages and (2) simulated and real vocabulary growth 
in children. In all the analyses presented, a significance 
level (alpha) of .05 was used.

Physical Growth
To study physical growth, we obtained data from the 

Berkeley growth study (Tuddenham & Snyder, 1954) in 
which various physical measures were collected, includ-
ing height. The study comprised 66 boys and 70 girls. The 
height of the children was measured four times a year 
from 0 to 2 years of age, then annually from 2 to 8 years, 
and finally twice a year from 8 to 18 years. As in Ramsay 
et al. (1995), we selected the data from 1 to 18 years of 
age. Because the data were sparse, we excluded children 
who had any data missing between 1 and 18 years old; 
these were 9 girls (ID 5 309, 311, 316, 321, 331, 332, 
334, 368, 383) and 12 boys (ID 5 201, 203, 208, 209, 
210, 215, 218, 222, 233, 260, 269, 274). Our analysis was 
based on the remaining 54 boys and 61 girls.

When applied to these data, AMD successfully detected 
and measured three important and well-known phenomena 
of physical growth of children: (1) an adolescent growth 
spurt in virtually all the children; (2) an earlier age of onset 
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data, only children who had adolescent spurts that repli-
cated across the three levels of smoothing were included 
in this analysis (53 males and 55 females).

The ANOVA of spurt start revealed a main effect of 
gender [F(1,106) 5 100, p , .001], a main effect of 
smoothing [F(2,212) 5 455, p , .001], and a smooth-
ing 3 gender interaction [F(2,212) 5 4.1, p , .05]. As 
we can see in Figure 7, adolescent spurts started earlier 
in girls than in boys and earlier with more smoothing. 
The small interaction indicates a slightly larger effect of 
smoothing for girls than for boys.

The ANOVA of point of maximal velocity also revealed 
a main effect of gender [F(1,106) 5 113, p , .001], a 
main effect of smoothing [F(2,212) 5 351, p , .001], 
and a smoothing 3 gender interaction [F(2,212) 5 58, 
p , .001]. Figure 8 indicates similar effects for point of 

spurt in 53 of the 54 boys (98%) and a mid-growth (pre-
pubertal) spurt in 8 boys (15%). No boy had more than 
two significant spurts. Figure 6 graphically summarizes 
the spurt results for all the girls in the Berkeley study, 
using the same smoothing level λ of 0.1. AMD found a 
statistically significant adolescent spurt in 58 of the 61 
girls (95%) and a mid-growth (prepubertal) spurt in 6 girls 
(10%). No girl had more than two significant spurts.

Smoothing parameter analysis. To explore the effect 
of smoothing, we compared results obtained with previ-
ously used smoothing λ values of 0.01 (Shultz, 2003) and 
0.34 (Ramsay et al., 1995), also adding 0.1 as an intermedi-
ate value. Shultz chose a smoothing value of 0.01 because 
it generated sensible results in accord with the literature. 
This serves as an illustration of how AMD measures of 
spurts can be subjected to further statistical analysis.

We did not tailor the level of smoothing for each in-
dividual because we hypothesized that noise in the data 
would likely be similar across individuals. Because 
children’s heights were measured in similar experimen-
tal conditions, variance could be expected to be similar 
across individuals. Also, for the purpose of this analysis, 
we assumed that the variance of the biological processes 
involved in growth would be similar across children. Fi-
nally, it was not clear how to establish the best smoothing 
level for each case.

Contingency tables of the frequency of preadoles-
cent and adolescent growth spurts for the three levels of 
smoothing are presented in Tables 1 and 2 for boys and 
girls, respectively. A chi-square test revealed that fre-
quency of AMD-detected spurts was not statistically dif-
ferent for the three levels of smoothing for boys [χ2(2) 5 
1.3, p . .05] or for girls [χ2(2) 5 2.1, p . .05].

Next, we subjected adolescent spurt measures to a two-
way mixed ANOVA, using gender as an independent fac-
tor and the three levels of smoothing as a repeated factor. 
Separate ANOVAs were performed on start, point of max-
imal velocity, amplitude, and duration. To avoid missing 

Table 1 
Contingency Table of the Frequency of Preadolescent and 

Adolescent Growth Spurts for the Three Values of Smoothing 
for the 54 Boys in the Berkeley Growth Study

Level of Smoothing (λ)

   0.01  0.1  0.34  Total  

Preadolescent   4   8   6   18
Adolescent 54 53 53 160

 Total  58  61  59  178  

Table 2 
Contingency Table of the Frequency of Preadolescent and 

Adolescent Growth Spurts for the Three Values of Smoothing 
for the 61 Girls in the Berkeley Growth Study

Level of Smoothing (λ)

   0.01  0.1  0.34  Total  

Preadolescent   6   6   2   14
Adolescent 57 58 57 172

 Total  63  64  59  186  
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In short, we found a huge gender effect in spurt start, 
point of maximal velocity, and amplitude, at all levels of 
smoothing we tested. Girls tended to have their adolescent 
growth spurt at younger ages than did boys. Spurts tended 
to be less intense and shorter for girls than for boys. In-
creased smoothing made spurts appear longer and less 
intense, and changes of the smoothing parameter had a 
small, yet significant, impact on the timing of the adoles-
cent spurt.

Simulated Vocabulary Growth
As a second illustration of the AMD technique, we ana-

lyzed simulated data generated by a model of vocabulary 
growth in children (McMurray, 2007; Mitchell & Mc-
Murray, 2008, 2009). This mathematical model simulated 
the cumulative count of words learned by children. More 
difficult words take more time to learn, and difficulties 
have some statistical distribution. Here, we used a normal 
distribution of difficulties. At each time step, each word 
accumulated one point, and when its points surpassed its 
difficulty, the word was considered as learned. The simu-
lations showed that a vocabulary spurt naturally emerges 
as a mathematical consequence of words’ varying in dif-
ficulty level and being learned in parallel, suggesting that 
various psychological explanations are not necessary to 
explain a vocabulary spurt (McMurray, 2007; see van 
Geert, 1991, for an alternative explanation).

In comparison with height data, where the dependent 
variable is continuous, vocabulary growth exhibits the 
challenging and interesting feature that the dependent 
variable is discrete. When measuring children’s vocabu-
lary size, only uttered words that are complete and rec-
ognizable are counted, and not failed attempts (which 
might be considered as fractions of words). Similarly, in 
the McMurray (2007; Mitchell & McMurray, 2008, 2009) 
model, cumulative word counts are discrete integer values 
representing complete words, computed as the integral of 
a single smooth distribution. Depending on the theoretical 
approach taken, the jitter caused by the discrete nature of 
measurements of the dependent variable (here, the word 
count) might be treated as noise or error.

Thus, as an additional benefit of using these artificial 
data, we can investigate whether the number of spurts de-
tected by AMD depends on data sampling. In a number 
of data sets including actual and simulated conservation 
acquisition and physical growth, more densely sampled 
data tend to show more spurts (Shultz, 2003).

Results. As can be seen in Figure 11, there is a large 
global spurt with maximal velocity at around 2,000 time 
steps. In addition, numerous minispurts due to the stair-
case nature of the cumulative sum of integer values can be 
seen on shorter time scales, as illustrated in Figure 12.

We analyzed these simulated vocabulary growth data 
with AMD, manipulating sampling density: a high sam-
pling rate using all 4,000 data samples and a low sam-
pling rate using every 20th sample, for a total of 200 
samples (4,000/20). Lowering the sampling rate acts as a 
low-pass filter that can reduce the jitter of the cumulative 
vocabulary curve. The staircase nature of the complete 
cumulative word count curve implies high-frequency 

maximal velocity as for spurt start; that is, girls tend to 
have their adolescent spurt at a younger age than do boys, 
and AMD reports these spurts as occurring at a slightly 
earlier age with increased smoothing.

The ANOVA of spurt amplitude revealed a main effect 
of gender [F(1,106) 5 101, p , .001], a main effect of 
smoothing [F(2,212) 5 261, p , .001], but no interaction. 
Inspection of Figure 9 reveals that boys had more intense 
adolescent spurts than did girls and that increased smooth-
ing resulted in smaller amplitudes.

The ANOVA of spurt duration revealed a main effect 
of gender [F(1,106) 5 16, p , .001], a main effect of 
smoothing [F(2,212) 5 359, p , .001], and a smooth-
ing 3 gender interaction [F(2,212) 5 12, p , .001]. In 
Figure 10, we see that adolescent spurts lasted longer 
for boys than for girls and that duration increased with 
smoothing. The interaction reflects that duration was less 
sensitive to smoothing for girls than for boys.
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three English-speaking children every third week between 
9 and 27 months of age. Children’s vocabulary sizes were 
measured in 30-min videotaped sessions. We analyzed 
these data with AMD using a smoothing value of 0.01, 
as in a less systematic analysis of the same data (Shultz, 
2003).

Consistent with what Shultz (2003) noted, the child 
named Ashley exhibited three velocity peaks (see Fig-
ure 15), and all of them were statistically significant. 
AMD showed two and one significant spurts, respectively, 
for the other two children, for an average of 2.0 spurts 
among all three children.

Our preliminary results applying AMD to simulated 
and real vocabulary growth suggest that vocabulary spurts 
do exist and that, depending on sampling density, there 
can be more than a single spurt. For the data presented 
here, density of the real vocabulary (18 data points) is 
much lower than the simulated vocabulary (2001 data 
points). For this reason, the simulated data have more 
high-frequency signals and, thus, require more smoothing 
(1 3 106 vs. 0.01 for the real vocabulary). This may sug-
gest that these real data are undersampled for the purpose 
of identifying growth spurts.

spectral components. We empirically determined that a 
smoothing value λ equal to 1.0 3 106 was appropriate 
for these data.

As was expected, AMD showed one large global spurt 
under low sampling. As is shown in Figure 13, we in-
deed observe one circle indicating a single significant 
spurt. Furthermore, we anticipated finding many local 
minispurts under high sampling. Indeed, AMD showed 68 
smaller spurts under high sampling, represented as circles 
in Figure 14.

In short, this analysis shows how spurt detection is sen-
sitive to smoothing and sampling. We found one large 
spurt in sparsely sampled data and many smaller spurts 
in more densely sampled data. Given the theoretical 
assumption that these minispurts are due to noise, one 
would prefer the lower sampling. An exhaustive discus-
sion of the effect of sampling rate on spurt detection can 
be found in Adolph, Robinson, Young, and Gill-Alvarez 
(2008).

Real Vocabulary Growth
Finally, we investigated vocabulary growth in real data 

from Corrigan (1978). These data were collected from 
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cept of discontinuities rather than spurts. They designed a 
system that tests the null hypothesis that some continuous 
model with noise is capable of generating the observed 
data. Discontinuities are identified when this null hy-
pothesis is rejected. Such discontinuities are analogous 
to spurts because they correspond to sufficiently large in-
creases in rate of growth. Using their technique, van Dijk 
and van Geert successfully identified discontinuities in 
language development data.

Strengths of the AMD Method
First, AMD is a useful data-mining and exploratory tool 

when the sheer amount of data would make manual iden-
tification of spurts prohibitively costly—for example, im-
aging data such as event-related potentials and data from 
eyetracking devices.

Second, AMD is more comprehensive than other ap-
proaches to spurt detection. For instance, the techniques 
proposed by van Dijk and van Geert (2007) and Harezlak 
and Heckman (1999) can identify spurts, but not where 
they occur, how large they are, and how long they last. 
The technique used by Molinari et  al. (1980) allows 
identification of the time when the spurt is most intense 
(similar to the point of maximal velocity in AMD) and 
the velocity at that point. But it does not locate when the 
spurt starts, how intense it is (amplitude), and how long 
it lasts.

Discussion

Our AMD method identifies systematic and reliable 
spurts and quantifies the point of maximal velocity, start, 
amplitude, and duration of the spurts. AMD automated 
detection of growth spurts, replicated well-known phe-
nomena in physical and vocabulary growth, allowed us to 
explore the effect of smoothing and sampling on identi-
fied spurts, and informed debates about the existence of 
such spurts. 

Other techniques have been proposed to deal with the 
important problem of reliable spurt detection. For exam-
ple, Harezlak and Heckman (1999) analyzed the Berkeley 
growth data, defining spurts as local maxima in the ve-
locity curve, similar to our definition. Their system tests 
the hypothesis that a curve has, at most, k spurts against 
the alternative hypothesis that the curve has more than 
k spurts, with p values computed using bootstrapping. 
Their technique successfully identified an adolescent 
growth spurt in at least 98% of the children.

In addition, Molinari et al. (1980) introduced a statis-
tical technique based on the null hypothesis that veloc-
ity growth curves are convex between birth and puberty. 
They reported a small but significant mid-growth spurt in 
height in most children.

Finally, van Dijk and van Geert (2007) took a different 
theoretical approach to growth centered around the con-

Je
rk

–40

–20

0

20

A
cc

el
er

at
io

n

–40

–20

0

V
el

o
ci

ty

–10

0

10

20

V
o

ca
b

u
la

ry
 It

em
s

0

20

40

2 4 6 8 10 12 14

Session

2 4 6 8 10 12 14

Session

2 4 6 8 10 12 14

Session

2 4 6 8 10 12 14

Session

Corrigan (1978) Study–Child 1

Figure 15. Results for the child named Ashley in the Corrigan (1978) study.



Detection of Growth Spurts        821

discrete manner. However, a discontinuous process would 
arguably also produce a similar pattern. The nature of the 
measurement (uttered words) does not allow us to dis-
criminate the two on the basis of the observed data alone, 
and thus other, domain knowledge is required.

Limitations of the AMD Method
First, no automated method, including ours, can extract 

anything meaningful from very noisy or overly sparse 
data. Statistical techniques require good data, and this is 
especially true of AMD, because it extensively uses higher 
derivatives, which are particularly sensitive to noise (Ram-
say et al., 1995).

Second, the identification of significant spurts as non-
overlapping confidence bands relies on the assumption 
that the maxima and the minima of the function are in-
dependent and uncorrelated. Although it is simple and 
intuitively appealing, this approach is unrealistic and may 
result in an under- or overestimation of the width of the 
confidence bands. A more complex approach based on the 
variance–covariance matrix estimated by FDA would pro-
vide more accurate estimates of confidence bands when 
maxima and minima are correlated (see Ramsay & Silver-
man, 2005, for details).

Finally, our relatively conservative definition of spurts 
excludes some events that other methods may deem to be 
spurts. Our system requires both a significant increase in 
velocity before the spurt and a significant decrease after 
the spurt. When only one of these conditions is met, AMD 
excludes a possible spurt. This may explain why we detect 
fewer spurts than do some other researchers, such as Mo-
linari et al. (1980). Conservatism in spurt detection does 
have advantages. For instance, if a child has a long period 
of relatively constant growth, followed by a second, long 
period of constant growth but at a lower rate, it is unclear 
whether either of these periods should be considered a 
spurt. It seems more correct to consider both periods as 
plateaus, without any spurt.

Spurts and Stages of Development
Identifying spurts in growth curves may inform us about 

stages of development. As we argued in the introduction, 
noise is inevitable in experimental data, causing apparent 
spurts that are not genuine. Thus, an important first step in 
studying stages of development is to identify statistically 
reliable spurts. Rigorous spurt detection criteria like those 
of AMD appear vital to achieving this goal.

Many results and theories in psychology suggest such 
stages; some are well accepted (e.g., many of the phe-
nomena studied by Piaget and his colleagues [Piaget 
& Inhelder, 2000] and Siegler’s [1998] balance scale 
problem), but others may be more contentious (e.g., vo-
cabulary growth; Ganger & Brent, 2004). AMD could 
help address such controversial issues, providing a rig-
orous basis for researching difficult issues in linearity, 
nonlinearity, and possible stages of development. When 
psychological growth can be measured as a continuous 
variable, detected spurts could identify potential tran-
sitions between stages, which in turn could be charac-

Third, AMD is more automated and less subjective than 
predecessors that require expert judgments to identify 
spurts (Ramsay et al., 1995; Shultz, 2003).

Fourth, like other techniques, AMD can be applied both 
to individual records and to averaged sample-level anal-
yses. Averaging across curves can help to remove noise 
present in individual curves. However, averaging across 
subjects can easily obscure spurts when they occur at dif-
ferent times for different children (James, 2008). With 
AMD, features measured on individual records can be 
used for population-level analyses. For instance, in this 
article, we compared spurt amplitudes, points of maxi-
mal velocities, and durations in two populations (boys and 
girls), using ANOVAs.

Local and Global Spurts
Although AMD is designed to detect local spurts, it 

can also be used to detect more global features, with ap-
propriate data preprocessing. We saw in the vocabulary 
growth example that lowering data sampling and increas-
ing smoothing act as a low-pass filter that allows more 
global features to emerge. Periodic growth such as a sine 
wave would require Fourier basis functions in FDA, and we 
would expect AMD to show periodic spurts in such data.

Spurts and Smoothing
As was mentioned, no universally agreed-upon method 

for smoothing exists. For confirmatory analyses, users 
may already have sufficient expertise and knowledge 
of the data to manually select an appropriate smoothing 
value. As we saw, the case in which the dependent vari-
able (e.g., vocabulary size) is observed and measured 
as a discrete (stairlike) variable is especially challeng-
ing. A possible theoretical perspective that can be taken 
is to treat these apparent abrupt increases as jitter or 
noise, not as spurts, and adjust smoothing and sampling 
accordingly.

For exploratory analyses, AMD can be used to per-
form sensitivity analyses to smoothing, as we did for 
height data. Researchers may find it valuable to know 
how smoothing influences the number and characteristics 
of the reliable spurts detected. In addition, AMD could 
be used for the reverse problem. Given unknown noise 
but theoretical grounds for expecting a certain number 
of spurts or spurt characteristics, one can infer how much 
smoothing is necessary and, thus, may learn something 
about noise in the data.

Interpreting Spurts
As with any other statistical tool, AMD should be used 

with caution, and domain expertise may be required for 
correctly interpreting the spurts that were detected, since 
some cases may be ambiguous. For instance, the simulated 
vocabulary growth illustrated the challenge of interpret-
ing discrete dependent values. Observed data, as shown in 
Figure 12, exhibited a stairlike profile and, consequently, 
appeared as spurts that AMD correctly detected. Here, we 
know that the pattern was generated by a continuous un-
derlying growth process that could be observed only in a 
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terized as relative plateaus between spurts. Suggested 
stage locations could then be tested further by examining 
knowledge representations at each suggested stage to see 
whether they are qualitatively different (Flavell, 1971) or 
fulfill other stage criteria.

Using FDA for Other Kinds of Data
Identifying spurts in time-based data such as physical 

growth is only a specific case of a more general problem of 
identifying maxima in some derivative of two-dimensional 
functional data. Recall that spurts are defined as velocity 
maxima. AMD can identify and quantify maxima in a fit-
ted function and any of its derivatives—hence, the use of 
maxima, rather than spurt, in its name. In particular, lo-
cating maxima in the fitted function itself could be very 
useful—for example, in brain-imaging data such as EEG 
and ERP. Users would need to instruct AMD to identify 
maxima in the fitted function itself, rather than in its first 
derivative (velocity). Harezlak and Heckman (1999) simi-
larly extended their system to look for spurts in derivatives 
of curves.

In this article, we assumed that the independent variable 
was time because growth is generally defined over time, 
but AMD can be used to analyze any two-dimensional 
functional data where the independent variable represents 
a property other than time. The meaning of maxima in 
the function or in its first derivative would depend on the 
nature of those variables.

Monte Carlo Approach to Testing AMD
We used McMurray’s (2007; Mitchell & McMurray, 

2008, 2009) vocabulary model to generate artificial 
data known to possess a spurt at the inflection point of 
a logistic function and then determined that AMD could 
identify that spurt. A possible avenue for future research 
would be to apply this Monte Carlo approach more gen-
erally and intensively. Namely, samples of artificial data 
of known characteristics (including some parameter vari-
ance) could be generated, and spurt detection mechanisms 
such as AMD could be tested and compared on the basis 
of their performance in detecting and quantifying these 
spurts. This approach would allow numerical estimation 
of important characteristics, such as rates of false alarms 
(Type I errors) and of false negatives (Type II errors) in 
spurt detection.

Conclusions

AMD uses an innovative and rigorous approach based 
on confidence bands to largely automate the spurt detec-
tion process. Although the generation of a smoothed FDA 
function still requires manual selection of the smoothing 
parameter λ, AMD surpasses other approaches in its de-
gree of automation. Automation enforces a strict criterion 
for significant spurts, which reduces the need for subjec-
tive judgment. Also, AMD quantifies more aspects of 
spurts than other methods do. In short, AMD goes further 
than other methods in being objective, quantitative, and 
comprehensive.
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Notes

1. We use the following notation to refer to the estimated function and 
its derivatives:

x(t)	 the estimated function itself;

  

d
dt

x(t)	 the first derivative, or velocity, of the estimated function;

  

d 2

dt 2
x(t)	 the second derivative, or acceleration;

  

d 3

dt 3
x(t)	 the third derivative, or jerk.

2. Although AMD requires three derivatives, we just saw that FDA re-
quires five derivatives for its roughness penalty method. However, other 
smoothing techniques may require different numbers of derivatives.

3. Acceleration of concave and convex functions does not change sign; 
thus, they contain no spurt, according to this definition.

4. Note that FDA is able to numerically estimate derivatives at any 
point, not only knots. 

(Manuscript received June 24, 2009; 
revision accepted for publication February 20, 2010.)
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